Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Диплом Счетное устройство импульсов на контролере HD44780

Информация:

Тип работы: Диплом. Предмет: Схемотехника. Добавлен: 22.02.2012. Год: 2011. Страниц: 66. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Счетное устройство видеоимпульсов на ПЛИС
содержание
Введение 3
1 Актуальность темы 3
2 Цели и задачи 5
3 Анализ задания и выбор платформы 5
1. Составление схемы устройства 7
2. Выбор элементов 9
2.1 Выбор ПЛИС. Описание внутренней структуры ПЛИС 9
2.2 Компаратор 13
2.3 Генератор тактовой частоты 15
2.4 Индикатор 16
2.4.1 Описание контроллера HD44780 17
2.4.2 Подключение ЖКИ-модуля 18
2.4.3 Программирование и управление ЖКИ-модуля: 25
2.5 Стабилизаторы 32
2.5 Программатор ByteBlaster 34
2.6 Сборка устройства 35
3. Конфигурирование ПЛИС 36
3.1 Система проектирования MAX+plus II 36
3.2 Описание программы конфигурации ПЛИС 36
3.2.1 Антидребезговая система (antibounce) 37
3.2.1,1 Встроенная макрофункция – счетчик lpm_counter 38
3.2.2 Двоичо-десятичный счетчик (counter10) 40
3.2.3 Устройство управлением индикатора (wh1602LCD) 41
3.2.3,1 Машина конечных автоматов 42
3.2.4 Делитель тактовой частоты для работы индикатора(divFreq) 6
3.2.5 Общая структура программы 46
Заключение 47
Литература 48
Приложение 1 (Принципиальная схема устройства) 49
Приложение 2 (Список портов ввода вывода ПЛИС epm 3256a) 50
Приложение 3 (Текст программы) 51

Введение
1 Актуальность темы
Реальная перспектива использования человеком огромных энергий, скрытых в недрах атома, появилась впервые в 1939 году. На сегодняшний день широкое практическое применение получают различного рода ядерные излучения, несмотря на то, что они опасны для организма человека и в то же время неощущаемы, поэтому для обнаружения и измерения ядерных излучений необходимы специальные приборы.
Основной частью приборов для регистрации ядерных излучений является элемент, воспринимающий излучения, - детектор излучения. Для этой цели используются счетчики разных типов, позволяющие зарегистрировать попавшую в него частицу в виде кратковременного электрического тока – импульса. Наиболее широкое применение имеют газоразрядные счетчики, работа которых основана на ионизирующем действии ядерного излучения. Постепенно их начинают вытеснять сцинтилляционные счетчики (СС), действие которых основано на регистрации вспышек света, возникающих в некоторых веществах под ударами частиц. Основными элементами такого счетчика являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). В начале 20 века визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a-частиц, осколков деления ядер) были основным методом ядерной физики. Позднее СС был полностью вытеснен.
Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки. Принцип действия СС состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (Люминесценция). Фотоны, попадая на катод ФЭУ, выбивают электроны (Фотоэлектронная эмиссия), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется. Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.
Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации «медленных нейтронов» в сцинтиллятор добавляют Li или В. Для регистрации «быстрых нейтронов» используются водородсодержащие сцинтилляторы. Для спектрометрии g-квантов и электронов высокой энергии используют Nal (Tl), обладающий большой плотностью и высоким эффективным атомным номером.
ФЭУ, предназначенные для СС, должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (108—108), малым временем собирания электронов (~ 10–8 сек), при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени СС ?10–9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 В в виде импульсов трапециевидной формы (видеоимпульсов).
Чтобы не только обнаружить ядерное излучение, но и измерить его интенсивность, недостаточно одного детектора излучения. Необходимы еще электронные устройства, подсчитывающие число электрических импульсов, то есть число попавших в детектор частиц, и устройства, показывающие результат подсчета [1].
Данная работа посвящена разработке электронного устройства считающего число электрических импульсов.


2 Цели и задачи
1. Необходимо реализовать счетное устройство апериодических видеоимпульсов с заданными параметрами:
• Диапазон изменения амплитуды входного сигнала 5…20В;
• Длительность импульса ?, не менее 10 нс;
• Минимальный интервал между импульсами , 10 мкс.
2. Для отображения счета необходимо наличие индикатора. Реализовать индикатор, на котором высвечивается число импульсов в непрерывном режиме счета через некоторый промежуток времени.
3. Управление устройством осуществляется посредством кнопок: старт/стоп – (начало счета/конец счета), сброс – (сброс счетчика).
3 Анализ задания и выбор платформы
Конечно, реализовать простой счетчик на дискретных элементах (триггерах), что может быть проще? Однако сложность заключается в том, что разработка счетчика на дискретных элементах потребует сложной настройки, что увеличит время разработки и цену устройства. Для моих целей нужен высокоскоростной счетчик. Реализовать его нужно на современной элементной базе. Платформы, на которых можно реализовать счетчик, на сегодняшний день нашлось две ПЛИС и микроконтроллеры, был сделан выбор в пользу первой, то есть ПЛИС так как она легче поддается функциональным изменениям (в дальнейшем это устройство может быть использовано в других целях) и тактовая частота обработки сигнала не фиксирована как у микроконтроллера, её можно задавать аппаратно и делить её в зависимости от необходимости. Итак ПЛИС (Программируемая Логическая Интегральная Схема ).
Из наиболее известных производителей ПЛИС следует отметить фирму Altera. Небольшая, вначале, компания удачно решила задачи стоящие перед ними в начале (определить элементарные базис ПЛИС, разработать математические методы синтеза устройств в выбранном базисе, создать интегрированную систему проектирования цифровых устройств на ПЛИС), путем постепенного согласованного усложнения элементной базы и средств проектирования. Ее успех ко второй половине 90-х годов вывели её в число основных производства микросхем ПЛИС.
Была выбрана ПЛИС семейства MAX 3000 EPM3256A
Тип микросхемы Выходы I/ Триггеры Ячейки Мах частота MHz
EPM3032A 4 30 32 32 92
EPM3064A 4 30
62 64 64 192
EPM3128A 4 76
92 128 128 182
EPM3256A 4 112
154 256 256 156
Технология EEPROM обеспечивает сохранение конфигурации при отключении питания. Число логических эквивалентных вентилей ПЛИС находится в диапазоне 600-5000, количество программируемых пользователем выводов 44-208. Микросхемы могут быть запрограммированы с помощью программатора, в этом случае можно использовать все линии Ввода/Вывода (I /O). Кроме того, все ПЛИС имеют возможность внутрисистемного программирования (in-system programmability) через порт типа JTAG с использованием устройств типа BitBlaster, ByteBlaster и MasterBlaster, тогда 4 порта JTAG резервируются для этой цели. Выводы имеют возможность эмуляции режимов открытого коллектора и третьего (высокоимпедансного) состояния [2].

1. Составление схемы устройства
Входной сигнал, подаваемый на счетное устройство, представляет собой случайные трапецвидные импульсы разной амплитуды и длительности. Обнаружения импульсов производиться по амплитуде, для этого необходим компаратор. Сигнал с выхода компаратора подается на цифровую микросхему (ПЛИС), работающую с TTL уровнями, т.е. логический ноль 0.8...1.6 В логическая единица 1.65...2.0 В.
Для счета количества импульсов, поступаемых с компаратора, необходим счетчик. Счетчик планируется реализовать на ПЛИС.
Еще понадобиться индикатор, который будет отображать число этих импульсов. Целесообразно выбрать LCD индикатор со встроенным контроллером TTL логики, для облегчения работы, и напряжением питания +5В.
Генератор тактовой частоты необходимо выбрать исходя их следующих критериев: максимальная частота определяется скоростью работы ПЛИС, минимальная частота определяется минимальным интервалом между импульсами входного сигнала. Следовательно, интервал частот будет в пределах от 10 МГц до 150 МГц.
Источник питания: Проще всего решить проблему питания, взять готовый источник от персонального компьютера, но он имеет широкий диапазон выходных токов, с выходными напряжениями +5В, -5В, +12В, -12В. Для питания счетного устройства выберем напряжение +12В. В самом устройстве установим интегральные стабилизаторы для питания ПЛИС +3.3В, а для питания компаратора, генератора тактовой частоты и индикатора +5В.
Управление устройством осуществляется с помощью двух кнопок, следовательно, необходимо антидребезговое устройство, которое можно реализовать на ПЛИС.
На конец мне нужен программатор ByteBlaster для программирования (прошивки) ПЛИС.
Структурная схема изображена на рис. 1.1. ...

?
Заключение
Подводя итог выше проведенной работы, хочу заметить, что получившееся устройство оказалось вполне удачным. Работа устройства была проверена с помощью генератора прямоугольных импульсов. Плата устройства показана на рисунке 4.1.
Данное устройство можно подключать не только к СС с ФЭУ, но и к другим детекторам радиоактивных излучений, например счетчик Гейгера. Для этого необходимо пересчитать делитель, который установлен до компаратора.
На этапе разработки в схему счетного устройства была добавлена АЦП Analog Device, AD7715с последовательным интерфейсом SPI. АЦП планируется использовать для измерения напряжения подаваемого на детектор.

Рис 4.1 Монтажная плата устройства.

Литература
1. Корсунский М.И. «Атомное ядро» - М.: Гостехиздат, 2007.
2. Бродин В.Б., Калинин А.В., «Системы на микроконтролерах и БИС программируемой логики» - М.: Эконом, 2002.
3. Вицын Н. «Современные тенденции развития систем автоматизированного проектирования в области электроники» // Chip News, № 1, 2007. С. 12–15.
4. Губанов Д. А., Стешенко В. Б., Храпов В. Ю., Шипулин С. Н. «Перспективы реализации алгоритмов цифровой фильтрации на основе ПЛИС фирмы ALTERA» // Chip News, № 9–10, 2006, с. 26–33.
5. Тех. Док. «One Technology Way, P.O. Box9106, Norwood, MA 02062-9106, U.S.A.», analog.com
6. LCD Controller/Driver LSI. Data Book. © 2004 Hitachi America Ltd.
7. «Алфавитно-цифров е индицирующие ЖК-модули фирмы Powertip.» Каталог, 1-е издание, © 2002 КТЦ-МК.
8. Микросхема: СЕ110. Техническое описание, 1-е издание, © 2007 КТЦ-МК,
9. Микросхема: DB-CE110. Техническое описание, 1-е издание, © 2007 КТЦ-МК.
10. Тех. Док.«MC78TXX», Fairchild Semiconductor Corporation, 2002, fairchildsemi.com
11. Тех. Док. «LMS1585A», National Semiconductor Corporation, April, 2000, national.com, Email: europ.support@nsc.com
12. Тех. Док. «ByteBlasterMV Parallel Port Download Cable» Altera Corporation, July, 2002, Version 3.3



Приложение 1 (Принципиальная схема устройства)


Приложение 2 (Список портов ввода вывода ПЛИС epm 3256a)

Приложение 3 (Текст программы)
--Антидребезговая система
INCLUDE "LPM_COUNTER";
CONSTANT DELAY = 6;
SUBDESIGN ANTIBOUNCE
(
IN : INPUT;
CLK : INPUT;
OUT : OUTPUT;
)
VARIABLE
CT : LPM_COUNTER WITH(LPM_WIDTH=DELAY ;
TRIG : DFF;
BEGIN
TRIG.D = !IN;
CT.ACLR = !(!IN $ TRIG.Q);
CT.CLOCK = CLK;
TRIG.CLK=CT.Q[DELAY 1];
OUT = !TRIG.Q;
END...

Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.